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from which we can define the following double summation: Analysis of Metallic Waveguides of a Large Class of
Cross Sections Using Polynomial Approximation
and Superquadric Functions
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wherei = 1,2.3,7 =0,1,2,3,andk = 0,1,2, 3. Abstract—By using the polynomial approximation and superquadric

With the above definitions, the elements of the 16 submatrices fofictions in the Rayleigh-Ritz procedure, a unified method has been
[Ri], as given by (20), are then as follows, where, due to the Orthodggposed to analyze conducting hollow waveguides of a large class of cross

h g " . sections in our previous paper. Some useful and complicated cross-sectional
nality shown i1 pp and[?vm’ﬂ‘ by (A1) and (A2), respectively, we can waveguides in the microwave system, namely, eccentric annular, pentag-

for a givenp write onal, L-shaped, single-ridged, and double-ridged waveguides are analyzed
in this paper. Compared with other numerical methods, this method has
o the advantages of straightforward, accurate, and computational effective.

C«(""«) _LjBlLU

pliin =5 Sim,p,m(l ~+ 6p0) (A9) Index Terms—Polynomial approximation, Rayleigh-Ritz method,
-J“vf? superqaudric functions, waveguide analysis.
clem Fkﬁp ! — l
‘plyan — 2.2 { 220,pnn(1 + bp()) + Sgogvpnn(l + (Spo)}
0 (A10) I. INTRODUCTION
(hhy k) Riw g (146 ALl The analysis of a uniform metallic hollow waveguide can be carried
phan TG o + 8po) (A11) out by solving the Helmholtz equation and matching boundary condi-
(e KRuw tions on its cross section. A large number qf techniques ha_ve been pro-
plian = 2jweo 5501, prn (14 6p0) (A12) posedinthe literature for this purpose: one is the boundary integral—res-
2 onant mode expansion (BI-RME) [1]. By using superquadric functions
;(;7,]%)n __ 2;227 {Sézl,pnn(l + bp0) + 5502'%”(1 + 6po)} [2],[3]to de;cribe the bounplary of the wgvegu_ide in_the Rayleigh—Rit_z
0 method, various cross-sectional waveguides (including rectangular, cir-
o (A13) cular, elliptic, coaxial, triangular, etc.) have been analyzed successfully
(hh) _k;’,an g (14 6,0) (A14) in a unified manner [4]. In this paper, we extend the application of this
Y TR £0 method to analyze some waveguides with more complicated cross sec-
ey _KkpRaw ; tions that are commonly used in microwave systems. The cross sec-
plin =950 201 pnn (14 &p0) (A15) " tions of various hollow metallic waveguides to be analyzed are shown
o) k2P (o , ‘ in Fig. 1(a)—(f) for eccentric annular, pentagonal & 4 andN = 5),
K, 5 =- 2152 {Sszo,pﬁn(l = 6p0) — S102,pan (1 + épo)} L-shaped, single-ridged, and double-ridged waveguides.
0 (A16) Analysis of eccentric annular waveguides has been a subject of
5= numerous investigations [5], [6]. In [5], combined with conformal
(hny _FpRuw S0 man (1= 850) (A17) transformation, the method of intermediate problems was used to
i 2w ? find the lower bounds and the Rayleigh—-Ritz method to find the
ngn :kanu 5@01,,3;”1(1 +6,0) (A18) upper bounds of the cutoff frequency, both for TE and TM modes.

2jweg A family of new waveguides, pentagonal waveguides [described
) k2p by ABCDEin Figs. 1(b) and 1(c)], has been proposed in [7]. The
(eh) _ Fpl 1 s 1 - S .
Qpit an _2%3 {Slsl,pﬁn(l — 0p0) = S302,pan (1 + ‘5770)} conformal-mapping finite-difference (CMFD) method was used to
(A19) analyze its propagation characteristics, and the computed data were
compared to some measurement results. L-shaped, single-ridged, and

i k,R , i ; o

pr’;fgn :#Sémepm(l — 6p0) (A20) double-ridged waveguides are formed from variations of the rectan-
(he) (J,:flo ~(he) (he) gular waveguide. They can be used in satellite communication systems

Cotin =Sptan = Bpan = Qpran = 0- (A21)  for wide-bandwidth operations [8], [9]. The surface integral-equation

method (SIE) [10], the finite-element method (FEM) [11]-[13], and
the finite-difference method (FDM) [14], [15] have been used to study
these structures.

The method in this paper does not need a complex mathematical ma-
nipulation (such as conformal mapping) and discretization procedure
in the above methods. In Section Il, a brief description of the algorithm
is given. In Section Ill, numerical results obtained here are compared
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A BV TABLE |
COMPARISON OF THECUTOFF WAVENUMBERS FORTM AND TE MODES IN AN

yi a E o) ECCENTRICANNULAR WAVEGUIDE (@ = 1, a; = 0.5, AND d = 0.2)
F
' G P, D b C TM case TE case
Mode 15] Present € (5} Present ¢
X 1 4.8119 4.8129 0.15 1.3522 1.3614 0.89
2 5.5125 5.5252 0.23 1.4007 1.4122 0.30
3 6.1735 6.2099 0.59 2.6840 2.7165 1.16
4 6.8002 6.8375 0.565 2.6862 2.7331 1.72
5 7.3957 7.4619 0.89 3.9298 3.9723 1.07
(b) 6 7.6919 8.0615 1.24 3.9298 3.9891 1.50
7 8.4991 8.6160 1.36 5.0192 5.0251 0.12
8 9.0106 9.1358 1.27 5.1138 5.1694 0.99
9 9.3488 9.3673 0.20 5.1139 5.1762 1.18
c 10 9.4763 9.6245 1.54 5.834 5.9336 1.68
11 9.9577 10.159 1.98 6.261 6.3051 0.70
y 12 10.107 10.236 1.26 6.262 6.3262 1.02
L 13 10.253 10.409 1.50 8.599 6.7580 2.74
b [e] _)’( 14 10.848 11.113 2.38 7.311 7.4655 2.07
d 15 10.923 11.326 3.56 7.385 7.5345 1.98
a 16 11.567 11.460 0.86 7.392 7.6171 2.96
17 11.773 12.136 2.98 7.994 8.4071 4.91
(C) (d) 18 12026 12.407 1.18 8.500 8.6461 1.69
19 12074 12.491 2.00 8.626 8.6984 0.79
C o] 20 12.93 13.017 0.67
c c
g | e
YL d TABLE I
o—lx b ° COMPARISON OF THECUTOFF WAVENUMBERS OF TE MODES IN AN L-SHAPED
b WAVEGUIDE (¢ = b = 1.27 cm,AND ¢ = d = 0.635 cm)
d
a a € between Present and
Mode {14] [10] Present [14] (10}
(e) (f) TE, 1.9111 1.8917 1.9653 2.76 3.74
Fig. 1. Cross sections of: (a) eccentric annular, (b) pentagdnak(4), (c) TEz | 2.0600 29180  2.9632 | 0.11 1.60
- _ . . . TEg 4.9452 4.8755 4.94756 0.05 1.46
pentagqnal & = 5), (d) L-shaped, (e) single-ridged, and (f) double-ridged TE, <0452 50475 | 0.05
waveguides. TEg | 5.3128 5.2463  5.3108 | 0.13 1.38
TEg 5.6799 5.6334 0.95
TE7 6.9937 6.9968 0.04
Il. BRIEF DESCRIPTION OF THEALGORITHM TEg | 7.2784 77038 | 1.62
TEg 7.6002 7.6193 0.25

Details about this method can be found in [4] and [16]. The wave-
guide cross section is assumed to be intheplane, and is the longi-
tudinal direction in Cartesian coordinatés.denotes the wavenumber
in the z-direction and the time variatiorf“* is suppressed. The wave
equation need to be solved is

large polynomial number, which will result in very ill-conditioned
matricesK andM. For a specific problem, the maximum value of
the polynomial number is reached when negative eigenvalue appears.
. (E. L (E. The negative eigenvalue violates the system matrices’ positive definite
V7 {H } + k {H” } =0 (1) property.

whereV is the Laplacian operation in the-y-plane. For TM and IIl. NUMERICAL RESULTS

TE cases, the Dirichlet and Neumann boundary conditions need to b%he cutoff wavenumbers or wavelengths are represented in corre-

sa_tli_ifield, re_s%gcti\llilylaE i . db ies of ol sponding Tables |I-VI. The errge) in these tables means the relative
e longitudinal fieldE’- or H. is approximated by a series of po Y~error. For the TE case, due to the Neumann boundary condition, there

nomials®; exists a null mode with the zero cutoff wavenumber. It is a nonphysical
E. mode and has been removed from the result.
{7 }=Sen @
: =1 A. Eccentric Annular Waveguides

wherem stands for the polynomial number. The generalized eigenvalueThe following function is used to describe the waveguide geometry

matrix equation is
2
_ 1)
whereC is the column matrix of unknown coefficients, while matrices
K andM are given in [16]. The cutoff wavenumber and modal speavherea is the radius of the outer circle; is the radius of the inner
trum of the waveguide can be obtained once (3) has been solved. circle, andd is the eccentric distance.

The more complicated the waveguide cross section, the more comThe cutoff wavenumbers for both TM and TE modes in several ec-
plex the electromagnetic fields in the waveguide, and more polyncentric annular waveguides have been computed and compared with
mials will be needed in the above method. Using@h#g factorization the corresponding upper bounds in [5]. Reasonably agreements are ob-
for the generalized eigenvalue problem [17], the eigenvalues and coserved for all the cases, but only one set of results is listed in Table I.
sponding eigenvectors of (3) can be obtained accurately even with Tftee polynomial number used is 65 for both TM and TE cases.
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TABLE Il
COMPARISON OF THECUTOFF WAVELENGTHS (IN CENTIMETERS) FOR
PENTAGONAL WAVEGUIDE (EXAMPLE |: N = 5, 2a = 23 mm, AND
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b = 10.4 mm)
€ between Present and
Mode Measured [7] CMFD [7] Present Measured [7] CMFD [7}
TE} 5.526 5.396 5.4207 1.04 2.41
TEg 3.724 3.695 3.6784 1.25 0.78
TM1 3.059 2.918 3.0917 1.06 4.83
TABLE IV

COMPARISON OF THECUTOFF WAVELENGTHS (IN CENTIMETERS) FOR

C. L-Shaped, Single-Ridged, and Double-Ridged Waveguides

For L-shaped, single-ridged, and double-ridged waveguides, only
TE modes are considered in this paper. The matrices in (3) can be eval-
uated by the same numerical integration route used for all cases with
different input parameters. The result of the L-shaped waveguide with
dimensionst = b = 1.27 cm ande = d = 0.635 cm are shown
in Table Il. The polynomial number used is 75. The analytic solution
for some modes exist for above waveguide [14]. In the finite-differ-
ence—simultaneous iteration with Chebyshev acceleration (FD-SIC)
[14] method, it has found that tHEE3; mode has double degeneracy.

In the present method, it also shows this phenomenon.

PENTAGONAL WAVEGUIDE (EXAMPLE II: N' = 4, 24 = 72 mm, AND The result of a single-ridged waveguide Wi_th parameters
b = 34 mm) a = 10cmb = 0.5cm, ande = d = 0.25 cm is shown in
Table V. The polynomial number is 75 for this structure. The results
¢ between Present and of the SIE [10] and FD-SIC [14] methods are also included in this
Mode Measured [7] CMFD [7] Present Measured {7} CMFD (7] table for comparison
TEp 18.601 18.207 18.4528 0.80 1.66 a p . . . . .
TE, 14.497 14.434 14.1569 0.28 1.07 As the last example, the symmetric double-ridged waveguide with
™) 10.709 10.526 10.5424 1.58 1.74 dimensions: = 1.27cm, b = 1.016 cm, ¢ = 0.508 cm, andd =
0.3683 cm, depicted in Fig. 1(f), is analyzed. The polynomial number
is 95 for the double-ridged waveguide. The result of the present method
TABLE V

COMPARISON OF THECUTOFF WAVENUMBERS OF TE MODES IN A
SINGLE-RIDGED WAVEGUIDE (¢ = 1.0 cm, b = 0.5 cm, AND
¢=4d = 0.25cm)

Results of Different Method ¢ between Present and
Mode [14]) f10) Present f14] f10]
TEy 2.2422 2.2496 2.2772 1.54 1.21
TEg 4.8543 4.9436 4.9708 2.34 0.54
TEg 6.4476 6.5189 6.5120 0.99 0.01
TEg4 7.56185 7.5642 7.5252 0.09 0.52
TEg 9.8311 9.8792 0.42
TEg 12.5607 12.5664 0.06
TEq 12.5665 12.5607 0.05
TEg 12.7820 12.7667 0.12
TEg 13.4243 13.3823 0.31
TABLE VI

COMPARISON OF THECUTOFF WAVENUMBERS OF TE MODES FOR

DOUBLE-RIDGED WAVEGUIDE (¢ =
¢ = 0.508 cm,AND d = 0.3683 cm)

1.27cm b = 1.016 cm

for y-symmetric (due to the even function gf TE modes, and the
comparison with the results from [11]-[14] are also given in Table VI.
In all of the above tables, satisfactory agreements are observed.

IV. CONCLUSIONS

The cutoff wavenumbers or wavelengths of the TE and TM modes
for the eccentric annular, pentagonal, L-shaped, single-ridged, and
double-ridged waveguides have been reinvestigated in a unified
manner in this paper by using the unified method proposed in [4].
Through the numerical results, the accuracy, efficiency, and flexibility
of the present method are demonstrated. Similar to the FD-SIC
method [14], the present method can also find some missing modes in
literature. Based on the works in [4] and this paper, we can conclude
that a large class of waveguides can be analyzed in a unified manner
by this method efficiently.
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Results of Different Methods ¢ between Present and
Mode {11] {12] (13} [14] Present| {11] {12} [13] [14]
TE1oH 1.440 1.439 1.437 1.434 1.4849 3.02 3.09 3.23 3.43
ments.
TEyoT 3.168  3.2015 1.09
TE2¢T 6.192 6.193 6.197 8.192 6.2065 0.23 0.22 0.15 0.23
TEgoH 6.713 6.714  6.721 6.705  6.7230 | 0.15 0.13 0.03 0.27
TE; T 6.975 7.0021 0.39

B. Pentagonal Waveguides

For pentagonal waveguides, the constraint function that is used to[2]

describe the waveguide boundary can be written as
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