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from which we can define the following double summation:
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wherei = 1; 2; 3, j = 0; 1; 2; 3, andk = 0; 1; 2; 3.
With the above definitions, the elements of the 16 submatrices of

[Rl], as given by (20), are then as follows, where, due to the orthogo-
nality shown inI l1;p�p andI l2;p�p, by (A1) and (A2), respectively, we can
for a givenp write
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Analysis of Metallic Waveguides of a Large Class of
Cross Sections Using Polynomial Approximation

and Superquadric Functions

Sheng-Li Lin, Le-Wei Li, Tat-Soon Yeo, and Mook-Seng Leong

Abstract—By using the polynomial approximation and superquadric
functions in the Rayleigh–Ritz procedure, a unified method has been
proposed to analyze conducting hollow waveguides of a large class of cross
sections in our previous paper. Some useful and complicated cross-sectional
waveguides in the microwave system, namely, eccentric annular, pentag-
onal, L-shaped, single-ridged, and double-ridged waveguides are analyzed
in this paper. Compared with other numerical methods, this method has
the advantages of straightforward, accurate, and computational effective.

Index Terms—Polynomial approximation, Rayleigh–Ritz method,
superqaudric functions, waveguide analysis.

I. INTRODUCTION

The analysis of a uniform metallic hollow waveguide can be carried
out by solving the Helmholtz equation and matching boundary condi-
tions on its cross section. A large number of techniques have been pro-
posed in the literature for this purpose: one is the boundary integral–res-
onant mode expansion (BI-RME) [1]. By using superquadric functions
[2], [3] to describe the boundary of the waveguide in the Rayleigh–Ritz
method, various cross-sectional waveguides (including rectangular, cir-
cular, elliptic, coaxial, triangular, etc.) have been analyzed successfully
in a unified manner [4]. In this paper, we extend the application of this
method to analyze some waveguides with more complicated cross sec-
tions that are commonly used in microwave systems. The cross sec-
tions of various hollow metallic waveguides to be analyzed are shown
in Fig. 1(a)–(f) for eccentric annular, pentagonal (N = 4 andN = 5),
L-shaped, single-ridged, and double-ridged waveguides.

Analysis of eccentric annular waveguides has been a subject of
numerous investigations [5], [6]. In [5], combined with conformal
transformation, the method of intermediate problems was used to
find the lower bounds and the Rayleigh–Ritz method to find the
upper bounds of the cutoff frequency, both for TE and TM modes.
A family of new waveguides, pentagonal waveguides [described
by ABCDE in Figs. 1(b) and 1(c)], has been proposed in [7]. The
conformal-mapping finite-difference (CMFD) method was used to
analyze its propagation characteristics, and the computed data were
compared to some measurement results. L-shaped, single-ridged, and
double-ridged waveguides are formed from variations of the rectan-
gular waveguide. They can be used in satellite communication systems
for wide-bandwidth operations [8], [9]. The surface integral-equation
method (SIE) [10], the finite-element method (FEM) [11]–[13], and
the finite-difference method (FDM) [14], [15] have been used to study
these structures.

The method in this paper does not need a complex mathematical ma-
nipulation (such as conformal mapping) and discretization procedure
in the above methods. In Section II, a brief description of the algorithm
is given. In Section III, numerical results obtained here are compared
with those by other methods and measurement data. A conclusion is
drawn in Section IV.
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Fig. 1. Cross sections of: (a) eccentric annular, (b) pentagonal (N = 4), (c)
pentagonal (N = 5), (d) L-shaped, (e) single-ridged, and (f) double-ridged
waveguides.

II. BRIEF DESCRIPTION OF THEALGORITHM

Details about this method can be found in [4] and [16]. The wave-
guide cross section is assumed to be in thex-y-plane, andz is the longi-
tudinal direction in Cartesian coordinates.kz denotes the wavenumber
in thez-direction and the time variationej!t is suppressed. The wave
equation need to be solved is
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whererT is the Laplacian operation in thex-y-plane. For TM and
TE cases, the Dirichlet and Neumann boundary conditions need to be
satisfied, respectively.

The longitudinal fieldEz orHz is approximated by a series of poly-
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wherem stands for the polynomial number. The generalized eigenvalue
matrix equation is

KC
T = k2cMC (3)

whereC is the column matrix of unknown coefficients, while matrices
K andM are given in [16]. The cutoff wavenumber and modal spec-
trum of the waveguide can be obtained once (3) has been solved.

The more complicated the waveguide cross section, the more com-
plex the electromagnetic fields in the waveguide, and more polyno-
mials will be needed in the above method. Using theQZ factorization
for the generalized eigenvalue problem [17], the eigenvalues and corre-
sponding eigenvectors of (3) can be obtained accurately even with the

TABLE I
COMPARISON OF THECUTOFFWAVENUMBERS FORTM AND TE MODES IN AN

ECCENTRICANNULAR WAVEGUIDE ( a = 1, a = 0:5, AND d = 0:2)

TABLE II
COMPARISON OF THECUTOFFWAVENUMBERS OFTE MODES IN AN L-SHAPED

WAVEGUIDE (a = b = 1:27 cm,AND c = d = 0:635 cm)

large polynomial numberm, which will result in very ill-conditioned
matricesK andM. For a specific problem, the maximum value of
the polynomial number is reached when negative eigenvalue appears.
The negative eigenvalue violates the system matrices’ positive definite
property.

III. N UMERICAL RESULTS

The cutoff wavenumbers or wavelengths are represented in corre-
sponding Tables I–VI. The error(�) in these tables means the relative
error. For the TE case, due to the Neumann boundary condition, there
exists a null mode with the zero cutoff wavenumber. It is a nonphysical
mode and has been removed from the result.

A. Eccentric Annular Waveguides

The following function is used to describe the waveguide geometry
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wherea is the radius of the outer circle,a1 is the radius of the inner
circle, andd is the eccentric distance.

The cutoff wavenumbers for both TM and TE modes in several ec-
centric annular waveguides have been computed and compared with
the corresponding upper bounds in [5]. Reasonably agreements are ob-
served for all the cases, but only one set of results is listed in Table I.
The polynomial number used is 65 for both TM and TE cases.
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TABLE III
COMPARISON OF THECUTOFF WAVELENGTHS (IN CENTIMETERS) FOR

PENTAGONAL WAVEGUIDE (EXAMPLE I: N = 5; 2a = 23 mm, AND

b = 10:4 mm)

TABLE IV
COMPARISON OF THECUTOFF WAVELENGTHS (IN CENTIMETERS) FOR

PENTAGONAL WAVEGUIDE (EXAMPLE II: N = 4; 2a = 72 mm, AND

b = 34 mm)

TABLE V
COMPARISON OF THECUTOFF WAVENUMBERS OF TE MODES IN A

SINGLE-RIDGED WAVEGUIDE (a = 1:0 cm; b = 0:5 cm, AND

c = d = 0:25 cm)

TABLE VI
COMPARISON OF THECUTOFF WAVENUMBERS OF TE MODES FOR

DOUBLE-RIDGED WAVEGUIDE (a = 1:27 cm; b = 1:016 cm
c = 0:508 cm, AND d = 0:3683 cm)

B. Pentagonal Waveguides

For pentagonal waveguides, the constraint function that is used to
describe the waveguide boundary can be written as
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wherea = OC; b1 = OB; b2 = OF , andb3 = OG in Figs. 1(b)
and (c). Cutoff wavelengths of two samples waveguides were measured
and computed by CMFD [7]. The waveguide parameters of example I
[as shown in Fig. 1(b)] areN = 5; 2a = 23 mm, andb = 10:4 mm;
the waveguide example II [as shown in Fig. 1(c)] has parametersN =
4; 2a = 72 mm andb = 34 mm. The comparison among the present
results and the measurement data and the CMFD is shown in Tables III
and IV. For the TE case, the polynomial number is 40, and it is 25 for
the TM case in the computation.

C. L-Shaped , Single-Ridged, and Double-Ridged Waveguides

For L-shaped, single-ridged, and double-ridged waveguides, only
TE modes are considered in this paper. The matrices in (3) can be eval-
uated by the same numerical integration route used for all cases with
different input parameters. The result of the L-shaped waveguide with
dimensionsa = b = 1:27 cm andc = d = 0:635 cm are shown
in Table II. The polynomial number used is 75. The analytic solution
for some modes exist for above waveguide [14]. In the finite-differ-
ence–simultaneous iteration with Chebyshev acceleration (FD–SIC)
[14] method, it has found that theTE3 mode has double degeneracy.
In the present method, it also shows this phenomenon.

The result of a single-ridged waveguide with parameters
a = 1:0 cm; b = 0:5 cm, andc = d = 0:25 cm is shown in
Table V. The polynomial number is 75 for this structure. The results
of the SIE [10] and FD–SIC [14] methods are also included in this
table for comparison.

As the last example, the symmetric double-ridged waveguide with
dimensionsa = 1:27 cm; b = 1:016 cm; c = 0:508 cm, andd =
0:3683 cm, depicted in Fig. 1(f), is analyzed. The polynomial number
is 95 for the double-ridged waveguide. The result of the present method
for y-symmetric (due to the even function ofy) TE modes, and the
comparison with the results from [11]–[14] are also given in Table VI.
In all of the above tables, satisfactory agreements are observed.

IV. CONCLUSIONS

The cutoff wavenumbers or wavelengths of the TE and TM modes
for the eccentric annular, pentagonal, L-shaped, single-ridged, and
double-ridged waveguides have been reinvestigated in a unified
manner in this paper by using the unified method proposed in [4].
Through the numerical results, the accuracy, efficiency, and flexibility
of the present method are demonstrated. Similar to the FD–SIC
method [14], the present method can also find some missing modes in
literature. Based on the works in [4] and this paper, we can conclude
that a large class of waveguides can be analyzed in a unified manner
by this method efficiently.
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